Bayesian Inference of Genetic Regulatory Networks from Time Series Microarray Data Using Dynamic Bayesian Networks

نویسندگان

  • Yufei Huang
  • Jianyin Wang
  • Jianqiu Zhang
  • Maribel Sanchez
  • Yufeng Wang
چکیده

Reverse engineering of genetic regulatory networks from time series microarray data are investigated. We propose a dynamic Bayesian networks (DBNs) modeling and a full Bayesian learning scheme. The proposed DBN directly models the continuous expression levels and also is associated with parameters that indicate the degree as well as the type of regulations. To learn the network from data, we proposed a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. The RJMCMC algorithm can provide not only more accurate inference results than the deterministic alternative algorithms but also an estimate of the a posteriori probabilities (APPs) of the network topology. The estimated APPs provide useful information on the confidence of the inferred results and can also be used for efficient Bayesian data integration. The proposed approach is tested on yeast cell cycle microarray data and the results are compared with the KEGG pathway map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncovering Gene Regulatory Networks from Time-Series Microarray Data with Variational Bayesian Structural Expectation Maximization

We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expect...

متن کامل

Inferring gene networks from time series microarray data using dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria f...

متن کامل

First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks

Inferring the network structure from time series data is a hard problem, especially if the time series is short and noisy. DNA microarray is a technology allowing to monitor the mRNA concentration of thousands of genes simultaneously that produces data of these characteristics. In this study we try to investigate the influence of the experimental design on the quality of the result. More precis...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Integrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks

Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal the temporal program of gene expression from microarray expression data, is essential in systems biology. To overcome the challenges posed by the noisy and under-sampled microarray data, developing data fusion methods to integrate legacy biological knowledge for gene network reconstruction is a promising d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Multimedia

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007